THERMAL ANALYSIS AND LONGTIME STABILITY OF AMORPHOUS C0100-xBx ALLOYS

Y. Khan and R. Hawig

INSTITUT FÜR WERKSTOFFE DER ELEKTROTECHNIK RUHR-UNIVERSITÄT BOCHUM, GERMANY

(Received October 25, 1991)

Crystallization behaviour of amorphous $Co_{100-x}B_x$ alloys $(17 < x \le 40)$ has been investigated by differential thermal analysis (DTA) and dynamic temperature X-ray diffraction (DTXD) methods in the freshly prepared state and at a period of about eight years after preparation. The crystallization temperatures lie in the range 670 K-760 K. An average decrease of about 1.25 K/year over a period of eight years has been observed to take place in the crystallization temperatures of these materials. The value of heat of crystallization (ΔH_{cr}) and activation energy lie in the range 2.3 kJ/g-at - 5.9 kJ/g-at and 2.1 eV - 2.4 eV, respectively. The phases obtained at crystallization temperatures during DTXD analysis have been discussed.

Keywords: amorphous magnetic materials, Co-B alloys

Introduction

Amorphous magnetic materials based on the Co–B system are of great technological importance because of their superior magnetic properties. $Co_{100-x}B_x$ alloys can easily be obtained in the amorphous state (by rapidly quenching their melts) over a wide composition range $17 \le x \le 40$ [1–7 and res. given therein]. A comprehensive study of the crystallization behaviour of amorphous Co–B alloys (crystallization temperature, heat of crystallization, activation energy) is lacking and to our knowledge, no investigations (regarding the longtime stability of meltquenched amorphous Co–B alloys) have been reported yet. In the present work, results of thermal investigations of Co–B alloys over the whole amorphous range are reported.

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

Experimental

 $Co_{100-x}B_x$ alloys, each of mass about 10 g, were prepared in the composition range $17 \le x \le 40$ by high-frequency (263 kHz) induction melting of the constituents in water-cooled quartz tubes under an atmosphere of purified argon at a pressure of 400 mbar. The purities of the starting elements were 99.98 wt% and 99.8 wt% for Co and B, respectively. The final compositions of the alloys were assumed to be that of the weighed components.

Amorphous Co–B alloys were prepared in the form of thin ribbons (about 1 to 2 mm in width and 30 to 50 μ m in thickness) by free jet melt-spinning under purified helium atmosphere at a pressure of 250 mbar, using the outer surface of a rapidly rotating copper wheel as a substrate and quartz-tubes with a melt ejection orifice of 0.4 mm. The details are given elsewhere [9]. Room temperature X-ray diffraction was carried out by a Guinier-de Wolf camera. For dynamic temperature X-ray diffraction (DTXD) analysis (i.e. continuous recording of X-ray diffraction patterns during continuous heating of samples), a modified Guinier-Lenné high temperature camera [8] was used.

Crystallization temperatures, T_{cr}^{OLD} , were measured with a modified Linseis differential thermal analysis (DTA) equipment at a heating rate of 10 deg/min at a pressure of 500 mbar of purified argon gas for all samples. This work was done already in 1983 by one of the authors [5].

Crystallization temperatures, T_{cr}^{NEW} , and the heats of crystallization were remesured by DTA for the present work using the samples prepared in 1983.

Activation energies have been calculated using the single heating rate as described by Kneller *et al.* [11]. This method provides reasonable activation energies for thermal processes taking place during crystallization of amorphous metallic materials.

Results and discussion

The results of DTA investigations of the crystallization behaviour of Co_{100-x} B_x amorphous alloys are given in Table 1 and Fig. 1. It is seen, that, in general, in the composition range $17 < x \le 40$, crystallization temperatures increase with increasing B content from 664 K (x = 18) to 750 K (x = 40). In spite of this general behaviour we found four narrow composition ranges, x = 17, 21, 26 and 35, giving rise to maxima of crystallization temperatures, whose origin is not yet understood.

DTXD analysis in the temperature range 300 K-1200 K has revealed that a 'polymorphic' type crystallization takes place for the composition range $20 \le x \le 40$. The phase of first crystallization was found to be bct Co₂B for $27 \le x \le 40$, see Fig. 2a and b. Along with this phase a second phase crystallizes at a slightly

	T ^{NEW} /	T _{cr} OLD /	$\Delta H_{\rm cr}$ /	E _A /	ΔH _{cr} / T _{cr} /
	К	К	kJ·(g-at) ⁻¹	eV	J(K·g-at) ⁻¹
C060B40	752	_	4.00	2.40	5.33
C065B35	750	760	5.53	2.39	7.37
C066B34	727	_	4.55	2.31	6.26
Co69B31	690	700	5.87	2.19	8.51
Co70B30	695	703	5.60	2.20	8.05
C071.5B28.5	716	724	6.45	2.27	9.01
C073B27	720	725	5.27	2.29	7.32
C074B26	740	750	4.63	2.36	6.26
C075B25	696	706	5.18	2.20	7.44
C076B24	684	693	4.65	2.17	6.79
C077B23	681	698	4.41	2.16	6.47
C078B22	686	-	4.10	2.17	5.97
C079.25B20.75	688	694	4.29	2.18	6.15
Co ₈₀ B ₂₀	687	695	4.56	2.18	6.63
Co81B19	667	675	4.69	2.11	7.03
Co82B18	664	673	3.39	2.10	6.86
Co _{82.5} B _{17.5}	693	700	2.43	2.20	3.51
Co83B17	703	709	2.39	2.23	3.40

Table 1 Crystallization data of the amorphous Co100-xBx alloys

Fig. 1 Crystallization-temperatures, T_{cr}^{OLD} , T_{cr}^{NEW} , heat of crystallization, ΔH_{cr} , activation energy, E_A , and entropy of crystallization, $\Delta H_{cr}/T_{cr}$, of amorphous Co_{100-x}B_x alloys

J. Thermal Anal., 38, 1992

Fig. 2a, b DTXD-pattern of the amorphous $Co_{100-x}B_x$ alloys taken with $CoK\alpha$ radiation (30 kV, 30 mA, 5 mm slit width [8]) in the temperature range 300 K-1200 K at a heating rate of 50 K/h. The black dots on the left along the ordinate are primary beam marks 100°C apart. The X-ray diffraction reflections marked with white dots on a horizontal line are due to the phase printed on the right. a) x = 37, b) x = 30

higher temperature, identified as CoB for x > 35 and fcc Co for $26 \le x \le 35$. For $20 \le x < 26$ the crystallizing phases are however bct Co₃B/orthorhombic Co₃B, see Fig. 2c and d. For x < 20 a 'eutectic' type crystallization takes place with hexagonal Co (saturated with B) and orthorhombic Co₃B, see Fig. 2e. These find-

Fig. 2c, d DTXD-pattern of the amorphous $Co_{100-x}B_x$ alloys taken with $CoK\alpha$ radiation (30 kV, 30 mA, 5 mm slit width [8]) in the temperature range 300 K-1200 K at a heating rate of 50 K/h. The black dots on the left along the ordinate are primary beam marks 100°C apart. The X-ray diffraction reflections marked with white dots on a horizontal line are due to the phase printed on the right. c) x = 26, d) x = 24

ings are in agreement with thermomagnetic analysis of the same samples described elsewhere [7].

Activation energies envolved in the crystallization process were calculated with single heating rate, Φ (deg/s), using the following equation,

$$E_{\rm A} = k_{\rm B}T_{\rm p} \left[\ln \left[\left(T_{\rm p} - T_{300} \right) / \Phi \right] + 29.1 \right],$$

[11], where T_{300} and T_p are room temperature (≈ 300 K) and peak maximum temperatures, respectively; k_B is the Boltzmann constant. The results are given in Table 1 and Fig. 1. It is seen that activation energies show the same behaviour (as a function of composition of these alloys) as crystallization temperatures. The opposite behaviour is found for heat of crystallization, ΔH_{cr} released at crystallization temperatures and for entropy of crystallization temperatures, ΔH_{cr} and $\Delta H_{cr}/T_{cr}$ (if at all valid). As can be seen from Fig. 1, with increasing crystallization temperatures, ΔH_{cr} and $\Delta H_{cr}/T_{cr}$ both decrease. A correlation between $\Delta H_{cr}/T_{cr}$ and the ordering of crystal structures, as observed in the quasi-binary Fe₃B-Ni₃B system [12], could not be found in this Co–B system.

Fig. 2e DTXD-pattern of the amorphous Co_{100-x}B_x alloys taken with CoKα radiation (30 kV, 30 mA, 5 mm slit width [8]) in the temperature range 300 K-1200 K at a heating rate of 50 K/h. The black dots on the left along the ordinate are primary beam marks 100°C apart. The X-ray diffraction reflections marked with white dots on a horizontal line are due to the phase printed on the right. e) x = 17.5

As Co-B alloys are of great technological interest, because of their remarkable magnetic properties, a long-time-stability investigation of the amorphous state of Co_{100-x}B_x glassy alloys is of great importance. Therefore we took eight years old amorphous ribbons (i.e. stored in air for 8 years) and reinvestigated their crystallization behaviour, $T_{\rm cr}^{\rm NEW}$, and compared our results to those taken eight years ago, $T_{\rm cr}^{\rm OLD}$ (Table 1). It is seen, that crystallization temperatures have decreased by about approximately 10 K in 8 years. A linear extrapolation (which although not correct, however pertain to the lowest limit) reveals that it would take more than about 600 years till the crystallization temperatures of these materials decrease to the room temperature value.

* * *

The authors are thankful to Mr. W. Mark, Mr. F. Müllers and Miss G. Driessen for technical help.

References

- 1 R. Hasegawa and R. Ray, J. Appl. Phys., 50 (1979) 1586.
- 2 M. Takashi, C. Kim, M. Koshimura and T. Suzuki, Jap. J. Appl. Phys., 17 (1978) 1911.
- 3 H. Chen, T. Fujiwara and Y. Waseda, J. Mat. Sci., 17 (1982) 1337.
- 4 T. Guo-Hua and C. Wan-Rong, Mat. Sci. Eng., 97 (1988) 329.
- 5 Y. Khan, T. Abbas and S. Shaheen, J. Mat. Sci. Lett., 3 (1984) 3.
- 6 Y. Khan, J. Non-Cryst. Solids, 86 (1986) 137.
- 7 Y. Khan and T. Abbas, Phys. Stat. Sol. (a), 125 (1991) K 105.
- 8 Y. Khan, J. Phys. E: Sci. Instrum., 18 (1985) 18.
- 9 Y. Khan, E. Kneller and M. Sostarich, Z. Metallkde., 72 (1981) 553.
- 10 Y. Khan, E. Kneller and M. Sostarich, Z. Metallkde., 73 (1982) 624.
- 11 E. Kneller, Y. Khan, Du Cheng and B. Fröchte, Z. Metallkde., 80 (1989) 774.
- 12 Y. Khan, Z. Metallkde., 74 (1983) 385.

Zusammenfassung — Mittels DTA und temperaturabhängiger Röntgendiffraktion (DTXD) wurde das Kristallisationsverhalten von amorphen $Co_{100-x}B_x$ Legierungen (17 x 40) im frisch präparierten Zustand und etwa acht Jahren nach der Herstellung untersucht. Die Kristallisationstemperatur liegt im Bereich 670-760 K. Für die Kristallisationstemperatur dieser Materialien konnte über die Periode von acht Jahren hinweg eine mittlere Abnahme von etwa 1.25 K/Jahr beobachtet werden. Die Werte für Kristallisationswärme (H_{cr}) und Aktivierungsenergie liegen im Bereich 2,3-5,9 kJ/g-At beziehungsweise 2,1-2,4 eV. Die während der DTXD bei den Kristallisationstemperaturen erhaltenen Phasen wurden eingehend besprochen.